Antagonistic Regulation of Flowering Time through Distinct Regulatory Subunits of Protein Phosphatase 2A
نویسندگان
چکیده
Protein phosphatase 2A (PP2A) consists of three types of subunits: a catalytic (C), a scaffolding (A), and a regulatory (B) subunit. In Arabidopsis thaliana and other organisms the regulatory B subunits are divided into at least three non-related groups, B55, B' and B″. Flowering time in plants mutated in B55 or B' genes were investigated in this work. The PP2A-b55α and PP2A-b55β (knockout) lines showed earlier flowering than WT, whereas a PP2A-b'γ (knockdown) line showed late flowering. Average advancements of flowering in PP2A-b55 mutants were 3.4 days in continuous light, 6.6 days in 12 h days, and 8.2 days in 8 h days. Average delays in the PP2A-b'γ mutant line were 7.1 days in 16 h days and 4.7 days in 8 h days. Expression of marker genes of genetically distinct flowering pathways (CO, FLC, MYB33, SPL3), and the floral integrator (FT, SOC1) were tested in WT, pp2a mutants, and two known flowering time mutants elf6 and edm2. The results are compatible with B55 acting at and/or downstream of the floral integrator, in a non-identified pathway. B' γ was involved in repression of FLC, the main flowering repressor gene. For B'γ the results are consistent with the subunit being a component in the major autonomous flowering pathway. In conclusion PP2A is both a positive and negative regulator of flowering time, depending on the type of regulatory subunit involved.
منابع مشابه
A phytochrome-associated protein phosphatase 2A modulates light signals in flowering time control in Arabidopsis.
Reversible protein phosphorylation, which is catalyzed by functionally coupled protein kinases and protein phosphatases, is a major signaling mechanism in eukaryotic cellular functions. The red and far-red light-absorbing phytochrome photoreceptors are light-regulated Ser/Thr-specific protein kinases that regulate diverse photomorphogenic processes in plants. Here, we demonstrate that the phyto...
متن کاملMolecular model of the A subunit of protein phosphatase 2A: interaction with other subunits and tumor antigens.
Protein phosphatase 2A consists of three subunits, the catalytic subunit (C) and two regulatory subunits (A and B). The A subunit has a rod-like shape and consists of 15 nonidentical repeats. It binds the catalytic subunit through repeats 11 to 15 at the C terminus and the tumor antigens encoded by small DNA tumor viruses through overlapping but distinct regions at N-terminal repeats 2 to 8. A ...
متن کاملDifferential expression of the catalytic subunits for PP-1 and PP-2A and the regulatory subunits for PP–2A in mouse eye
PURPOSE Reversible protein phosphorylation is a fundamental regulatory mechanism in all biologic processes. Protein serine/threonine phosphatases-1 (PP-1) and 2A (PP-2A) account for 90% of serine/threonine phosphatase activity in eukaryote cells and play distinct roles in regulating multiple cellular processes and activities. Our previous studies have established the expression patterns of the ...
متن کاملSerine/Threonine Phosphatases: Mechanism through Structure
The reversible phosphorylation of proteins is accomplished by opposing activities of kinases and phosphatases. Relatively few protein serine/threonine phosphatases (PSPs) control the specific dephosphorylation of thousands of phosphoprotein substrates. Many PSPs, exemplified by protein phosphatase 1 (PP1) and PP2A, achieve substrate specificity and regulation through combinatorial interactions ...
متن کاملMechanisms of the Scaffold Subunit in Facilitating Protein Phosphatase 2A Methylation
The function of the biologically essential protein phosphatase 2A (PP2A) relies on formation of diverse heterotrimeric holoenzymes, which involves stable association between PP2A scaffold (A) and catalytic (C or PP2Ac) subunits and binding of variable regulatory subunits. Holoenzyme assembly is highly regulated by carboxyl methylation of PP2Ac-tail; methylation of PP2Ac and association of the A...
متن کامل